In many cells, perhaps one- fifth of the population, moving the stimulus brings out another kind of specific response. Instead of firing equally well to both movements, back and forth, many cells will consistently respond better to one of the two directions. One movement may even produce a strong response and the reverse movement none or almost none, as illustrated in the figure to the left. In a single experiment we can test the responses of 200 to 300 cells simply by learning all about one cell and then pushing the electrode ahead to the next cell to study it. Because once you have inserted the delicate electrode you obviously can't move it sideways without destroying it or the even more delicate cortex, this technique limits your examination to cells lying in a straight line. Fifty cells per millimeter of penetration is about the maximum we can get with present methods. When the orientation preferences of a few hundred or a thousand cells are examined, all orientations turn out to be about equally represented--vertical, horizontal, and every possible oblique. Considering the nature of the world we look at, containing as it does trees and horizons, the question arises whether any particular orientations, such as vertical and horizontal, are better represented than the others. Answers differ with different laboratory results, but everyone agrees that if biases do exist, they must be small--small enough to require statistics to discern them, which may mean they are negligible! In the monkey striate cortex, about 70 to 80 percent of cells have this property of orientation specificity. In the cat, all cortical cells seem to be orientation selective, even those with direct geniculate input. We find striking differences among orientation-specific cells, not just in optimum stimulus orientation or in the position of the receptive field on the retina, but in the way cells behave. The most useful distinction is between two classes of cells: simple and complex. As their names suggest, the two types differ in the complexity of their behavior, and we make the reasonable assumption that the cells with the simpler behavior are closer in the circuit to the input of the cortex.